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Abstract. We consider the high Reynolds number laminar flow of an incompressible fluid past a slender delta wing 
at incidence. The primary separation is represented by vortex sheets emanating from the leading edges. These 
sheets also carry a source distribution to represent viscous displacement effects. An interactive viscous-inviscid 
calculation is carried out to determine the secondary-separation flow properties on the wing. Agreement between 
the theoretical predictions and experiment is encouraging. For example, unlike the purely inviscid calculations, 
there is only a small pressure recovery beyond the suction peak, as is observed in experiment. Similarly the upward 
and inboard movement of the vortex core due to the secondary separation is in accord with experiment, as is the 
position of secondary separation. 

1. Introduct ion  

Separation from the leading edges of a slender wing is a phenomenon that has been 
extensively explored. In particular there are several successful inviscid models available for 

it, the first of which is due to Smith [1]. In this model the flow separation is represented by 
spiral vortex sheets which spring from the leading edges of the wing, embedded within a 
potential flow. This vortex configuration results in an adverse pressure gradient for the flow 

over the wing surface, and promotes a viscous separation on the wing. We refer to the 
separation from the leading edge as the primary separation, the viscous boundary-layer 
separation on the wing surface as the secondary separation. 

Experiments,  for example by Marsden et al. [2], Hummel  [3], clearly show the secondary 
separation phenomenon,  and in particular that the full pressure recovery beyond separation, 
of the inviscid model,  is not achieved. Nutter  [4] has presented an inviscid model of the 
secondary separation in which it is represented by a spiral vortex sheet that leaves the wing 
surface smoothly. In this inviscid model which, like the original model of Smith, is assumed 
to be conical the inviscid secondary separation line may be fixed arbitrarily on the wing 
surface. Nutter  combines this with a classical laminar boundary-layer calculation. This is 
used to fix the position of flow separation by varying the position of the inviscid separation 

line until the boundary layer, developing in the given inviscid flow field, separates at the line 
of inviscid flow separation. The model itself is thus self-consistent. There is some experimen- 

tal evidence, in the water-tunnel experiments of Thompson [5], which is in favour of this 

inviscid flow model. However ,  the pressure distributions which result from it are unlike any 
that have been observed in practice. A different approach has been adopted by Woodson 
and DeJarnet te  [6]. With the primary vortex configuration fixed they first determine the 
separation line from a classical boundary-layer calculation. Their  viscous calculation then 
continues beyond separation using an inverse interactive method,  with the no-slip condition 
replaced by conditions on the surface shear stress, both components of which are fixed at 
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the values at separation. The results obtained are more realistic than those of the inviscid 
model. 

In the present paper we address the secondary separation problem using a viscous-inviscid 
interactive method which allows for modifications to the vortex-sheet configuration that 
models the primary separation. We assume throughout a laminar, incompressible flow 
situation. Our starting point is the inviscid, conical flow solution for primary separation 
which is based on the inviscid model of Smith [1]. With the pressure field and surface 
velocities given from this configuration, we solve the interactive boundary-layer equations 
over the wing surface and along the leading-edge vortex sheet. Although the interactive 
equations are multi-structured we treat them in the manner set out by Veldman [7] for 
two-dimensional flows. Thus the main viscous layer, and much thinner sub-layer, are 
accommodated within a layer which has the classical boundary-layer thickness. As has been 
shown by Riley [8] the interaction at very high Reynolds number, in the situation under 
consideration, is largely two-dimensional, and this is reflected in the form that the interaction 
law takes. The interaction modifies the transverse component of the slip velocity at the 
surface, that is the component perpendicular to the separation line. The concomitant 
modification we make to the radial component is based upon the conical flow assumption for 
the outer inviscid flow. From the viscous calculation we find the viscous displacement 
velocity over the wing surface and along the sheet. For the outer inviscid flow this 
displacement effect may be represented as a source distribution along the wing and the 
sheet. With this source distribution in place the outer inviscid flow is re-calculated to give 
new positions and strengths for the leading-edge vortex configuration. We now have a new 
inviscid flow-field with which to carry out the interactive calculation. This process is repeated 
until a converged solution is achieved. 

The results we have obtained in the manner described above show qualitative agreement 
with the measured pressure distributions over the wing. Thus the suction rises to a peak 
value beneath the vortex core and after only a small pressure recovery, to the point where 
secondary separation takes place, there is a pressure plateau up to the leading edge. Over 
the Reynolds number range for which we have obtained solutions our pressure distributions 
display a conical character which is not a feature of the experimentally obtained results. For 
example, the experimental pressure measurements of Hummel [3] cannot be said to exhibit 
any conical features. Pressure levels increase monotonically from the apex to the trailing 
edge. Our predicted pressures are higher than the experimental values over the forward part 
of the wing, and lower than those over the rear portion. By contrast, geometric features of 
the real flows do exhibit conical flow features, and our estimates of the positions of the 
secondary separation line and the vortex cores show good quantitative agreement with 
experiment. We may conclude that our model of the secondary separation phenomenon is a 
significant improvement upon earlier models, and displays the main flow features that we 
attribute to secondary separation. However, it seems clear that to predict accurately the flow 
features when secondary separation is present, a three-dimensional model of the flow must 
be introduced. Such a model would incorporate many of the new features that we have 
introduced into the present model. 

Our mathematical treatment of the problem is developed in Section 2, where we treat the 
inviscid flow model, and the viscous-inviscid interaction, separately and outline our overall 
solution strategy. Section 3 is devoted to the solution procedure whilst Section 4 contains a 
detailed discussion of the results we have obtained. 
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2. Mathematical treatment 

2.1. The inviscid f low model  

With reference to Fig. 1 we consider, in the slender body and conical flow approximations, 
the flow past a thin delta wing. With origin O at the wing apex the x'-axis forms the 
centre-line of the wing, the y'-axis is measured to starboard and the z'-axis is perpendicular 
to the wing. The undisturbed stream of speed U makes a small angle a with the x'-axis; 3' is 
the semi-apex angle of the wing. 

Outside the viscous layers, namely the boundary layer and free shear layers which form on 
the wing and at the source-vortex sheets respectively, we may treat the flow as an inviscid, 
irrotational flow. In this inviscid region we represent the velocity V' of the fluid in terms of 
the free stream U and a disturbance potential ~ '  as 

V' =V(Ux' + ~ ' ) ,  (2.1) 

where, within our slender treatment, ~ '  satisfies the two-dimensional form of Laplace's 
equation 

• ;,,,, + %z, = 0 ,  

and a subscript is to denote differentiation. 
It is convenient to introduce dimensionless variables such that 

(2.2) 

x = K x ' / s ,  y = y ' / s ,  z = z ' / s ,  dO = dp ' /KUs,  (2.3) 

where K = tan y and s = Kx '  is the semi-span of the wing. The potential qb is the real part of 
a complex potential W ( Z )  where Z = y + iz. Our problem now is to construct the complex 
potential W which satisfies all of the appropriate boundary conditions. 

/ / I /  ff 

x ' /  = S 
/ 

Fig. I. The wing, vortex sheets and co-ordinate system. 

y" 
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Conditions at infinity, and on the wing surface, require 

W+iaZ---~O as Z - - - ~ ,  (2.4) 

and 

at lyl -l, 

respectively, where a = a/K is the incidence parameter ,  and D N is due to the viscous 
displacement effect. 

The remaining conditions to be satisfied include conditions on the source-vortex sheet. As 
we have already indicated in Section 1 we represent the displacement effect of the viscous 
layers by source distributions not only on the wing but also on the sheets. In particular, such 

a distribution on the sheet has the effect of introducing a normal velocity v u directed from 
the sheet into the flow on the inside of the sheet. If we take the outer surface of the sheet as 
a stream surface then, following Smith [1], we have on the outer surface, 

~n -- - r  sin ~b , (2.6a) 

where subscript n denotes the derivative in the direction of the unit inward normal to the 
trace of the sheet, and ~b is the angle between the tangent and radius vector as shown in Fig. 

2a. Since the normal velocity at the sheet is discontinuous, by an amount  vN, the 
corresponding condition on the inner surface of the sheet is 

~n = - r  sin (b + ON ' (2.6b) 

The remaining condition on the sheet is that the pressure jump across it ACp = 0. Here  A 
represents the difference operator ,  inside minus outside, at the sheet and Cp is the pressure 
coefficient. The pressure coefficient is given by 

Cp/K 2 = _2qb x _ (,2y + ~ )  + a z ' (2.7) 

If we apply the operator  A to equation (2.7), with ACp = 0, and use the fact that the sheet is 

conical, the pressure condition may then be written as 

1 2 
A(I  ) = A(~)o.(r  COS I~ - -  ~)O.m) - -  ~ V N  , (2.8) 

where o- is arc length along the cross section of the sheet as in Fig. 2, and the suffix m 
denotes the mean value across the sheet. Finally, at the leading edge where the primary 
separation takes place, we impose the Kutta condition that the velocity is finite, that is 

dW = + 1 ,  =0  (2.9) dZ  is finite at y z . 

Following Smith [1] we do not attempt to satisfy (2.6a) and (2.8) at all points of the sheet, 
which is infinite in extent. Instead, we represent the source-vortex sheet by a finite part 
springing from the leading edge and an isolated line vortex, as shown on the starboard 
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half-wing in Fig. 1. The inner part of the sheet, beyond E, is concentrated into the line 
vortex at V. Across the cut, which is left behind, the velocity potential jumps by an amount 
equal to the circulation about the line vortex. Equation (2.8) cannot be satisfied at the cut 
and we replace it by the condition that the total force on the vortex and cut be zero. This 
condition of zero total force may be written, see Smith [1], as 

lira ( d W  F 1 ) = 2 2 v _ 2 E  ' (2.10) 
z-~Zv ~ 2~ri Z - Z  v 

where F is the circulation of the starboard isolated vortex, Z v and Z e represent the positions 
of the isolated vortex and end of the cut respectively, and an overbar denotes the complex 
conjugate. 

To construct the complex potential it proves convenient to introduce the conformal 
transformation 

Z *~ = Z : -  1 , (2.11) 

which maps the slit [y[ ~ 1, z =0,  that represents the cross-section of the wing in the 
Z-plane, to the slit y* = 0, [z* I ~< 1 in the transformed plane, where Z* = y* + iz*. From 
symmetry considerations we see that in the Z*-plane the wing condition (2.5) is automatical- 
ly satisfied. We may then write the complex velocity in the transformed plane as 

dZ* - i a + ~  Z * - Z ~  Z * + 2  

+ ~ g*(o-*) Z* - Z*(o-*) Z *  + Z * ( o - * )  do-* 

,f, 
+--Irl ) Z ~--t* dr* 

+ ~ ~ Z * -  Z*(o-*) + Z* + Z*(o-*) do-*. (2.12) 

In (2.12) the first term represents the free stream whilst the second and third terms are 
contributions from the isolated vortices and the distributed vorticity, strength g*, along the 
finite parts of the source-vortex sheets respectively. The remaining terms are a consequence 
of the distributed sources on the upper surface of the wing, and along the source-vortex 
sheets, due to the viscous displacement effect of the boundary layer and the free shear 
layers. Note that on each sheet the source strength vanishes before the end of the finite part 
of it at o-*,, x. The condition (2.4) at infinity is satisfied automatically by (2.12). The 
remaining conditions, namely (2.6b), (2.8), (2.9) which is represented by the condition that 
dW/dZ* = 0 at Z* = 0 in the Z*-plane, and (2.10) serve to determine the unknowns which 
are the strength F and position Z v of the isolated vortices and the strength g*(o-*) = -dA@/ 
do-* and position of the finite parts of the source-vortex sheets. A discussion of the 
numerical procedures which implement the above conditions is deferred to Section 3. 

2.2. The viscous-inviscid interaction 

Central to our study of the thin viscous layers on the wing and the vortex sheet are the 
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classical laminar flow boundary-layer equations. In establishing these it proves convenient to 
employ the reduction of them used by Brown [9] for conical flow. Consider first the 
boundary layer on the upper surface of the wing. We work with cylindrical polar co-ordinates 
(?', 0, z ' )  with origin at the apex of the wing as in Fig. 1, and the corresponding velocity 
components (u', v', w'). The free-stream speed U is used to make velocities dimensionless, 
and in the spirit of boundary-layer theory we introduce the scaled variables 

z'(l)l l2Rel/2 lad' (F''~ 1/2 Rel/2 ( 2 . 1 3 )  

F ' = - 6  , , 7 /  ' 

where Re = Ul/u is the Reynolds number, v is the kinematic viscosity of the fluid and l is an 
arbitrary length. The further simplification, in which we write 

v~ = w + 1 ,~u, (2.14) 

leads us, see [9], to the boundary-layer equations 

au au _ v2 a2u {due ) 
v ~ + w -~  0( 2 - -  1 ) e t - ~ ' -  - -  U e , 

av av a2v { do e ) 
o + w-gi  + uo-- =o4 + , 

Oo Ow 

(2.15a,b,c) 

In equations (2.15) the external velocity components (Ue ,  Oe) on the wing surface may be 
expressed in terms of the potential @ of Section 2.1 as 

~c~ + K ~x) cos 0 + K@y sm 0 l u~ = uq, = (1 - 1 2 2 

1 2 2 • .' ! U e = Uep g~y  cos 0 - (1 - ~ + K ~x) sm 0 
(2.16a,b) 

For the viscous shear layers on the source-vortex sheets we ignore curvature effects in the 
boundary-layer equations so that equations (2.15) are still appropriate, as if the sheets had 
been 'unrolled' onto the plane z = 0. To find the quantities (Ue, re) analogous to (2.16) on 
the sheet we proceed as follows. If r s is the position vector of a point on the conical vortex 
sheet we have immediately, with reference to the rectangular axes of Section 2.1, that 

2 2 V-r~ 1 - 1 ~ 2 + K  dPx+KydPy+K2zdPz 
Ue = bleP -- Irsl --  {1 + g 2 ( y  2 + z2)} '/2 (2.17a) 

For the corresponding component of velocity v e we then have 

V-- Uers [ 
= q + 

from which we deduce, using (2.17a), that 

U e = Oep "~- ( A  2 + B 2 + C2) 1/2 + O(/.)2) , (2 .17b) 
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where 

2 A = I -  ½cr2+K ~x 

B = K ~ y  - ueKy/{1  

C = K ~  z - u . K z / { 1  

- Ue/{1 + K2(y  2 + z2)} '/2 , 

+ KZ(y  2 + z2)} I/2 , 

+ KZ(y 2 + z2)} 1/2 ' 

As we have remarked already in Section 1, and discuss further below, all our viscous 
calculations take place on the upper surface of the wing, where the secondary separation 
occurs. As a consequence all quantities in (2.16) are evaluated on the upper surface of the 
wing, and all quantities in (2.17a), (2.17b) on the inner side of the sheet. The boundary 
conditions for (2.15) require that the solution match with the external flow (ue, re), and that 
the solution is given at the line of attachment 0 = 0 a. In addition we have the no-slip 
condition at ( =  0 on the wing, whilst on the sheet we have adopted the conditions that 
w = u~" = v~ = 0 at ~" = 0. This latter assumption that the sheet is a stress-free boundary is an 
approximation. The complete problem requires the solution on the lower wing surface and 
matching of the solution with the flow on the outer side of the sheet. However, the dominant 
feature of the flow is the secondary separation on the upper surface of the wing, and as we 
demonstrate later the boundary conditions adopted for (2.15) at ~" = 0 on the sheet have a 
negligible effect on the overall flow properties. 

Note that with the introduction of the variables (2.14) all flow quantities are independent 
of ~ in the conical flow approximation. This means that the right-hand side of (2.15a) should 
be set to zero representing, as it does, the surface pressure gradient -Op/O~. However, it is 
retained for the moment, for reasons which will become clear in Section 2.3 below. 

It is well known that if in a two-dimensional laminar boundary-layer calculation a region of 
adverse pressure gradient is encountered which leads to flow separation, then the solution 
develops a singularity at the point of separation defined as the point of vanishing skin 
friction. In the problem under discussion here adverse pressure gradients on the upper 
surface of the wing are known to result in flow separation. Nutter [4] has demonstrated that 
the solution of (2.15) with (2.16) does indeed result in singular behaviour at separation. 
Catherall and Mangler [10], by working in an inverse mode in which the displacement 
thickness is prescribed, demonstrate that the singularity is removed if the pressure is allowed 
to adjust to the local flow conditions. Subsequent work by Sychev [11] and Smith [12] has 
revealed that the interactive coupling between the boundary layer and the potential flow 
region is crucial in a description of the regular behaviour of the flow at separation. The 
asymptotic theory for large Reynolds number involves a triple-deck structure centered upon 
the point of separation. Veldman [7] has argued that there appears to be little to gain, in a 
practical situation, by attempting to form a composite solution from the expansions in the 
different domains of the asymptotic solution. Rather more profitable, he suggests, is an 
approach in which a composite equation is used which reflects the main features of the 
asymptotic solution. It is in such a spirit that we proceed in the present situation. 

The two-dimensional asymptotic theory [11, 12] has been adapted by Riley [8] for slender 
conical flows of the type under consideration here. Our aim is to ensure that the dominant 

features of that theory are retained in our present treatment. The main deck of the 
triple-deck theory has thickness O(l Re 1/2), a scaling on which our equations (2.15) are 
based. The lower deck, of thickness O(l Re -5/s) is embedded within this. Thus if at a large, 
but finite, Reynolds number sufficient numerical resolution is available (2.15) will encompass 
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both the lower and main decks. In the region outside the main deck the perturbation to the 
inviscid potential flow is 'driven' by the viscous displacement velocity w a. The asymptotic 
theory [8] shows that since the changes which take place normal to the separation line in this 
slender conical flow are very rapid, compared with those parallel to it, the flow structure 
exhibits many of the features of a two-dimensional flow. If therefore we write f = FO/l, 

= z ' / l  the equation satisfied by the perturbation potential ~ = ~ ' /Ul ,  due to the displace- 
ment velocity, is simply 

~ + ~  = 0 .  (2.18) 

The solution of (2.18) is to vanish as ~2 ~_ 2._...~0% and on 77 =0,  ~ ,  = (l/?') 1/2 Re-1/2Wd . 
The solution for • yields a perturbation to the slip velocity ve such that we have 

Re- l /2  ( l ~ 1 / 2 f  w e 
O e = O e p  + - -  _ _  ~r \ f , /  ~ dE ' ,  (2.19) 

w h e r e  O e p  is as defined in (2.16b), (2.18). If we now let F =  l then (2.19) becomes 

Rerl/2 f W d 
[ e ~ O e p  ~- - -  rr 0 - - ~  d~ ' (2.20) 

where Re~ = U?'/v, so that we now have a representation of the flow which is locally conical. 
In (2.19), (2.20) the integration extends over the interaction region which encompasses both 
the separation and reattachment points. The latter may, of course, be on the source-vortex 
sheet itself. To complete our formulation of the problem we need an expression for the 
viscous displacement velocity. If we again reflect the two-dimensional nature of the flow in 
the interaction region, as suggested by the asymptotic theory of [8], then we write 

W d = ~'~ (U e - v) d~ ' .  (2.21) 

In broad outline the formulation of our problem is now complete. But before we present 
the numerical scheme which we have implemented for its solution, we now outline our 
strategy for the solution. 

2.3. Solution strategy 

The solution strategy we have adopted for the highly non-linear problem outlined in Sections 
2.1, 2.2 involves several iterative processes. These, together with the numerical schemes we 
have used to implement them, are outlined in some detail in Section 3. Here we give a brief 
indication of our overall strategy. 

Our first task is to obtain a solution of the inviscid problem outlined in Section 2.1. The 
initial solution of this problem is with v N =-O, and corresponds to the original solutions of 
Smith [1]. With this inviscid solution in place, giving the 'slip' velocity components uep, Vep, 
we are then in a position to study the viscous boundary layers and shear layers. In his work, 
Nutter [4] used the classical boundary-layer equations for the boundary layer on the wing 
surface. His calculations terminated in a singularity at the line of secondary separation. Our 
approach is the viscous-inviscid interactive approach outlined in Section 2.2. Thus, in order 
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to avoid the singular behaviour, we allow the pressure to adjust itself as the step-by-step 
integration of the equations (2.15) is carried out. This, in practice, leads to a continuous 
adjustment of the external velocity component re, at a fixed Rer, as in equation (2.20). As 
we advance the solution on the upper surface beyond the secondary separation line on the 
wing, a region of reversed flow is encountered. To continue the forward integration into this 
region it has been found necessary to employ the FLARE approximation in (2.15). Beyond 
the leading edge of the wing the boundary layers from the upper and lower wing surfaces 
merge. However, our treatment of the problem does not explicitly include a calculation on 
the lower wing surface. For the solutions we present in Section 4 below, we have replaced 
the condition that the upper and lower boundary layers merge smoothly, with the condition 
on the upper boundary layer that at ~" = 0, u s = v~ = 0. Tests we have carried out indicate 
that the solution is not sensitive to this boundary condition. Between separation and the 
reattachment which takes place on the sheet, there is a region of reversed flow. As a 
consequence the viscous solution cannot be completed in one sweep from the line of 
attachment to the end of point of the calculation, which is taken as a point where ]v e - v] is 
sufficiently small across the shear layer. Further sweeps are necessary with vep in (2.20) fixed. 
At the commencement of each sweep u e is changed. Initially it takes the value Uep in (2.16a), 
but is updated at the commencement of each sweep from the equation d u J d O  = v e in order 
to maintain local conicality. 

When the above iterative procedure is deemed to have converged we may up-date the 
outer inviscid solution. The changes to this are brought about by the displacement effect of 
the wing boundary layers, and the shear layers. With w d as in (2.21) we have u N : Wd/ 

K Re~/2 to represent the displacement effect in the inviscid solution. The inviscid solution is 
now recalculated to provide new values of the slip velocity (Uep, V~p). The viscous solution is 
then completed as before with one slight modification. Since the displacement effect is now 
included in the inviscid solution, as well as in (2.20), we modify (2.20) such that 

R 1/2 f e r W d  - -  Wdp 

ve = veP + --~r 0 {:, d{:'. (2.22) 

Here Wap is the displacement velocity which has been obtained in the previous viscous 
calculation, and the displacement effect is not now duplicated. 

The overall iterative procedure outlined above is continued until convergence according to 
some pre-set criteria has been obtained. In the converged solution we have w d = Wdp, the 
right-hand side of (2.15a) is zero, and the velocities VN, Wa, which represent the displace- 
ment effect in the inviscid and viscous solutions respectively, are self-consistent. The 
numerical schemes which enable this are outlined in the next section. 

3. Solution procedure 

The overall numerical treatment is in two parts, and deals separately with the inviscid flow 
model of Section 2.1 and the viscous-inviscid interaction of Section 2.2. 

3.1. The inviscid f l ow  mode l  

In the inviscid flow model the unknowns are the position Z~ and strength F of the isolated 
vortex, together with the position Z*(o-*) and the strength g*(o-*) of the vortex sheet. These 
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are to be determined from the conditions on the sheet, namely (2.6a,b), (2.8), on the 
isolated vortex and cut (2.10), and the Kutta condition (2.9). We note that in this part of the 
solution procedure the viscous displacement velocity is treated as a known quantity, given as 
it is from the interactive part of the calculation. For the initial inviscid flow solution, which 
serves as the base for our whole solution procedure, we have v N ~0 .  Such solutions 
correspond to the original inviscid solutions of Smith [1]. 

Our solution procedure follows very closely that of Barsby [13], which is a development of 
that originally introduced by Smith [1]. Thus we introduce the intrinsic co-ordinates (o-*, 0")  
of Fig. 2b in the transformed plane so that 

f0 o" * Z * ( c r * )  = e i**('3 d s ,  (3.1) 

where Z*(0) = 0. In order to perform the numerical integrations around the sheet we divide 
it into 2n equal steps of length h of arc length or*, and so define 2n + 1 pivotal points in 
terms of the angle 41" at these points. The length of the finite part of the sheet is then 
determined by the values of h and n. The first of these pivotal points coincides with the 
leading edge of the wing where it may be shown that 0"(0) = 0. It can also be shown that at 
the leading edge g*(0) = 0. Midway, in terms of arc length o-*, between each pivotal point 
we introduce an intermediate point (see Fig. 2b). The values of the quantities under 
consideration at the intermediate points are denoted by a tilde, and it is at these points that 
we determine the 4n unknowns ~* ~* . . .  0 i ,  g i ,  i = 1,2, , 2n. These unknowns together with Z~ 
and F give us a total of 4n + 3 unknown quantities which are determined by the force and 
Kutta conditions, (2.10), (2.9) respectively, together with the sheet conditions (2.6a,b), 
(2.8). These latter are combined to give, on the source-vortex sheet (see Appendix) 

: . , i - "  

Z=i  

Z = - i  

Z E • 

I, 
Z V 

Fig. 2a. Axes, and co-ordinates in the cross-flow Fig. 2b. Configuration in the transformed plane. P 
plane, pivotal, I intermediate point. 
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i • • IdZ*l  1 2 IO .'max 
+ -~ g (or) ~ VN-- ~ON=F+ J , g*(s) ds . 

(3.2) 

These conditions give a total of 4n + 3 nonlinear algebraic equations to solve for the 
unknown quantities. With the values of 0",  g* determined at the intermediate points the 
values of 0", g* at the pivotal points are then obtained by 4-point Lagrangian interpolation. 

All the conditions to be satisfied involve an evaluation of dW/dZ* at the appropriate 
intermediate point. The integrals in the third and fifth terms of (2.12) are evaluated by using 
Simpson's rule. For points on the sheet the integrals are interpreted as Cauchy Principal 
Values, and in order to employ Simpson's rule the singularity is removed in the following 
manner, 

f p ( t ) d t _ f p ( t ) - p ( t o )  d t + p ( t o ) f  at (3.3) 
t -  t o t -  t o t -  t o 

The first integral in (3.3) may now be evaluated numerically making use of l 'Hfpital's rule, 
and the second in closed form. The fourth term in (2.12), which represents the effect of the 
wing source distribution, due to the viscous displacement of the boundary layer, is evaluated 
by the Gaussian 5-point rule. 

We now have, from equations (2.9), (2.10) and (3.2) a total of 4n + 3 non-linear 
* ~ i , g i  at the2n equations for the 4n + 3 unknown quantities. These are Zv, F together with ~* ~* 

intermediate points on the sheet. To solve these equations we write them in the form 

f , ( x ) = 0 ,  i = 1 , 2  . . . . .  4 n + 3 ,  (3.4) 

where x is the solution vector for the 4n + 3 unknowns. From a reasonable initial guess of 
the solution we use the Newton iterative procedure to complete it, thus 

k+l  ~. X k x _ ( jk ) -a f f ,  (3.5) 

where j k =  (Of~/Ox~) is the Jacobian matrix, and x k denotes the k th iterate in the solution 
procedure. The iterative procedure is deemed to have converged when the sum of the 
absolute values of the residual functions f / is  less than 10 -6. 

With Z~, F together with ~*, g* at all points on the sheet now known we can readily 
evaluate physical quantities of interest such as the total circulation 

f0 T* F + g*(o.*) do-*, (3.6) 

the pressure distribution given by (2.7), and the external velocity components on the wing 
surface and on the source vortex sheet defined in equations (2.16a,b), (2.17) and (2.18). 
These velocity components serve as edge conditions for the boundary layer, and their 
detailed derivation is given in the Appendix. 

3.2. The viscous-inviscid interaction 

With an updated solution of the inviscid-flow problem determined for a given incidence 
parameter a, the corresponding slip velocities Uep, Vep may be calculated and the interactive 
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boundary-layer equations solved for a given Reynolds number Re r. Note that for the first 
boundary-layer solution, using the initial inviscid solution, we have Wep =-O. 

The numerical solution of the boundary-layer equations (2.15a,b,c) is carried out using the 
Keller box method [14] in a form which allows us to exploit Veldman's quasi-simultaneous 
interactive procedure. With Keller's box method equations (2.15a,b,c) are written as a 
first-order system, thus 

0---~ = g '  
Ov 
O-~=P,  

Og 02 Ou ( due]  
O~ w g +  - v  - ~  --D e V e -- dO / = 0 ,  i 
Off wp  - 1gu - u ~ -[- u e u e + dO ! = O, 

1 Ov Ow 

(3.7a,b,c,d,e) 

The boundary conditions for equations (3.7) for flow over the wing are 

u = v = w = O  at i f = 0 ,  ] 

U---~Ue(O), V--*ve(O ) as ~'---~oo,I (3.8a,b) 

together with initial conditions at the line of attachment 0 = 0 a at which the numerical 
scheme for the boundary-layer equations is initiated. The attachment-line solution is 
discussed at the end of this section. As we have already indicated we adopt a stress-free 
boundary condition on the source-vortex sheet so that we have there 

Ou _ Ov I O~" O~ '=w=O at ~ '=0 ,  

l U--->Ue(O) , V'---~Ue(O ) as ~ ' - - -~ .  
(3.9a,b) 

The interactive law (2.22) is used in the form 

d 

Re~ -1/2 foi~ - ~  ( f - L )  
Ue(O) -~- Oep(O) ~- - - ' 7 " i "  -0 7 - ~  dE (3.10) 

where the quantity f, with Of/O0 = w e has been introduced for computational convenience. It 
has been assumed in (3.10) that the region of strong interaction is confined to the interval 
0o<0<0b. 

Following Veldman [7] we discretise (3.10) and express it in the form 

vei - 4cf//= A i , (3.11) 

where vei and f~ are the unknown quantities at a streamwise location Oi, and 
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c = R e r I / 2  / ~  AO , 

log  A i : Vep(Oi) ~- c E {( f - fp )y+ l  - ( f - f p ) j }  / 
j=l i - 1  

j~ i - l . i  

- 2 { ( f -  fp)i+~ + ( f -  fp ) i -1}  - 4fpi I , 
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(3.12a) 

(3.12b) 

for a uniform grid A0 in the 0-direction. 
In order to complete the system of equations we may express (2.21), using (2.15c), as 

fo ~ doe Of w] + 3 u d~" + ~'~ (3.13) 
= h - - Y  ' 

where g'= is the computational edge of the boundary layer, representing the point at infinity. 
The discretised form of (3.7) and (3.10), together with (3.8), (3.9) and (3.13), yield a 

system of nonlinear algebraic equations for the unknowns u, v, v e, f and w. Newton's 
method is again employed to linearise these equations resulting in a matrix of coefficients 
which is of 5 x 5 block tridiagonal form with an additional column of 5 x 5 matrices. The 
equations are solved by the block-elimination method. Further details of the derivation of 
the finite-difference equations together with their linearisation and solution will be supplied 
on request. 

The line of attachment on the wing surface is defined as the line along which ve(O ) = O, 

and is identified from the inviscid solution. At the stagnation line we write v = OF(~),  
ve = aoO where a 0 = (dVe/dO)o o. The stagnation-line equations then follow as 

U" -- WU' = O , 

F " -  F 2 -  wF'  - uF + ao{ue(Oa) + a0} = 0, 

w ' + 3 u + F = 0 ,  

(3.14) 

where a prime denotes differentiation with respect to ~', together with 

u = F = w = O  at ~ '=0 ,  

u--~ ue(O,) , F--~ a o as ~'---~c. (3.15) 

The stagnation-line equations are also solved by the box method. 
Numerical solution of the boundary-layer equations commences with the attachment-line 

profiles. Initially the solution is advanced using the classical boundary-layer equations only. 
A switch to the interactive scheme, outlined above, is made when the region of strong 
interaction is encountered. In the regions of strong interaction, where the pressure gradient 
is initially adverse, flow separation and concomitant flow reversal is encountered. In order to 
continue the forward integration it has been found necessary to employ the FLARE 
approximation to the streamwise convective terms in the momentum equations (3.7c,d). 
Also, because of the elliptic character of our interactive equations, implied by the interactive 
law (3.10), it is necessary to make several sweeps along the boundary layer to obtain a 
converged solution. The solution is deemed to have converged when 
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max [f~(oz) -ff-l(0,)l-< 10 4 ,  
i 

where k denotes the iteration number. When the boundary-layer solution is complete we 
may return to the inviscid flow, Section 3.1, and continue with the global iterative scheme. 

4. Results and discussion 

As we have already indicated, the starting point for our solutions is the inviscid-flow model 
in which the primary separation is represented by a vortex sheet springing from the leading 
edge. Our calculations are carried out in the transformed plane defined by equation (2.11), 
and the method of solution is described in Section 3.1. We have chosen to work with nine 
pivotal points and eight intermediate points so that, in the notation of Section 3.1, n = 4. We 
determine the spacing, in terms of arc length o-*, between the pivotal points from 
h = IZ~[/C. With n = 4 we find that a value C = 5.4 gives a good representation of the vortex 
configuration as compared, for example, with the results of Smith [1]. We concentrate 
initially on the situation for which the incidence parameter a = 1. The slip velocities Uep, Vep 
on the upper surface of the wing and on the inner side of the vortex sheet are determined 
from equations (2.17). In Fig. 3 we show the component of velocity Vep. 

The next stage of the iterative calculation is to implement the interactive procedure of 
Section 2.2 where, in equation (2.22) Vep is as shown in Fig. 3 and Wdp =-- O. We concentrate 
initially on the case for which the Reynolds number Re r = 5 x 104. In all the cases considered 
we have adopted a wing of semi-apex angle 7 = 10° with 51 grid points on the wing surface 

corresponding to ~0 = 0.2 ° = 3.491 × 10 3 radians. The number of similarly spaced points on 
the vortex sheet varies with incidence parameter a. The calculation on the sheet extends to 
the point at which the viscous displacement velocity w d is essentially zero. Thus, for a -- 1, 
there are 32 such grid points on the sheet. The extent of the computational domain normal 
to the wing surface is dependent upon the Reynolds number, and increases as the Reynolds 
number increases. Typically if= = O(102). We have used a variable mesh size which varies, 
typically, from ~ff = 0.025 close to the boundary to ~ = 0.5 at the outer edge of the 
boundary layer. The viscous calculation is initiated at the line of attachment which for the 
case a = 1 is, as seen in Fig. 3, the wing centre-line. As we see from that figure the flow in 

0.6. 

0.4.  

0.2- 

0.0 
0.0 0.5 1.0 1.5 ~.0 

0 / 7  
Fig.  3. Distr ibution of the slip velocity vep on the upper  surface of the wing, and on the inner  side of the vortex 
sheet ,  de te rmined  from the inviscid flow model  for a = 1 when w d = O. 
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the 0-direction accelerates to a maximum, which is located beneath the isolated vortex, and 
then decelerates as the leading edge is approached. In this outboard region the pressure 
gradient is adverse and, unless the Reynolds number is sufficiently low, the flow will 
separate. When flow separation takes place it is in general, and certainly for Reynolds 
number Re r = 5 x 104, necessary to use the FLARE approximation in which the streamwise 
convective terms in equations (3.7c,d) are neglected in the region of reversed flow. However 
we note that at lower values of Re r, when there is a more modest region of reversed flow, it 
has been possible to incorporate the neglected terms as 'forcing' terms, evaluated from the 
previous sweep, in the equations. When successive sweeps lead to convergence, we then 
have a converged solution of the complete equations. Comparison between such a solution 
and the corresponding FLARE solution shows them to be almost identical giving us 
confidence in the FLARE approximation that has been expressed by others. Since we do not 
simultaneously calculate the boundary layer on the lower surface of the wing we comment 
again on the condition we have used on the sheet. For all the calculations described in this 
section we have assumed the sheet to be a stress-free surface. However, numerical 
experiments in which the condition is varied from no-slip to a negative shear stress give 
results which are virtually identical. The main feature which controls the overall flow 
properties is the separation and displacement effect on the wing surface. As we have already 
noted in Section 3.2, the elliptic character of our interactive equations, implied by (3.10), 
means that even when the FLARE approximation is employed several sweeps along the 
boundary layer, for a given Vep , are necessary to obtain a converged solution. Typically 30 to 
40 such sweeps are required. In Fig. 4 we show results of our interactive calculation which 
correspond to the velocity component Vep of Fig. 3. Figure 4(a) shows the distribution of u e as 
defined in equation (2.22). This inviscid slip velocity is already markedly different from that 
of the original inviscid solution. In Fig. 4(b) we show the viscous displacement velocity 
determined from this interactive calculation. This distribution of displacement velocity is 
quite typical of our calculations showing, as it does, outflow from the separated flow region 
over the wing, and entrainment into the viscous shear layer beyond the leading edge. It is the 
viscous displacement velocity which now provides the source distribution that features in the 
boundary condition (3.2) on the source-vortex sheet. A new inviscid solution is now 

0 6  
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0.0 0.5 1.0 1.5 2.0 

0/~/ 

Fig. 4a. T h e  d i s t r i b u t i o n  o f  v e o b t a i n e d  f r o m  the  first 

b o u n d a r y  l a y e r  i n t e r a c t i v e  c a l c u l a t i o n ;  a = 1, R e  r - 
5 × 10 4. 
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Fig. 4b. T h e  v i scous  d i s p l a c e m e n t  ve loc i ty  w d de-  

t e r m i n e d  f r o m  the  first  b o u n d a r y  l a y e r  i n t e r ac t i ve  
c a l c u l a t i o n ;  a = 1, R e ,  = 5 x 10 4. 
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> 

0.2 

0.0 
o.o oi~ 1.o 115 zo 

o/3, 
Fig. 5. D i s t r i b u t i o n  of  vep d e t e r m i n e d  f rom the  invisc id  flow m o d e l  wi th  w e as in Fig. 4b;  a = 1, Re  r = 5 x 10 4. 

obtained, incorporating the source distribution on the wing and sheet, as described in 
Section 3.1. From that solution we show, in Fig. 5, the newly obtained Vep. 

The procedure outlined above, which leads to the distributions of re, Fig. 4(a), and the 
updated Vep, Fig. 5, from the viscous and inviscid calculations respectively, we term as one 
global iteration. This procedure is now repeated until the difference between these dis- 
tributions is sufficiently small that the solution may be deemed to have converged. The 
convergence history of the procedure is illustrated in Figs 6 to 8 in which the results from 
alternate global iterations are presented. The solution which we accept as the converged 
result in this case of a = 1, Re r = 5 x 10 4 is from the tenth global iteration. There are several 
features associated with these results which are worthy of comment. The first is that in the 
distributions of Vep we have been unable to eliminate the small irregularity which appears 
beyond the leading edge, and in its immediate vicinity. The cause of this irregularity is not 
clear to us. A second point of interest is that from the fifth global iteration onward the 
distribution of v e from the viscous part of the calculation is virtually unchanged. Indeed on 
the wing itself v e and Gp coincide after these five global iterations. It has been our practice 
after six or seven global iterations to introduce underrelaxation such that Vep = 0.5(V e + Gp), 
which does of course leave Uep unchanged on the wing. The reason that the rate of 

0.6 0,4  
0 .2  

0.0 
0.0 0.5 1.0 1.5 2.0 

e/3, 

Fig. 6a. The  sl ip ve loc i ty  u~ o b t a i n e d  f rom the  second  

b o u n d a r y  l aye r  in t e rac t ive  ca lcu la t ion ;  a = 1, R e , =  
5 x 10 4. 
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Fig. 6b. The  d i s t r i bu t ion  of  Vep f rom the  second  g loba l  
i t e r a t i on ;  a = 1, R e ,  = 5 × 10 4. 
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Fig. 7a. As Fig. 6a, sixth interactive calculation. Fig. 7b. As Fig. 6b, sixth global iteration. 

convergence of Uep is lower than that of u e is associated with the changes which take place in 
the source and vortex strengths on the source-vortex sheet during each global iteration. 
These are small enough not to affect the result of the viscous-inviscid interactive calculation, 
but not sufficiently small that changes in flow properties calculated from the inviscid solution, 
particularly in the neighbourhood of the sheet, may be ignored. The implication of this is 
that important features of the flow, for example the distribution of pressure over the surface 
of the wing, may be estimated before complete convergence has been achieved on the sheet 
itself. The results we present subsequently in this Section, unless otherwise stated, have been 
obtained on that basis. 

As we have already remarked the source-vortex sheet configuration changes from that of 
the primary inviscid-flow model. In Fig. 9 we illustrate this point by making a comparison 
between the results from the initial inviscid solution and the results after one and ten global 
iterations. We see that when compared with Smith's [1] inviscid solution the isolated vortex 
core is moved both upward and inward. This is also true for other values of a and Rer, and is 
in accord with experiment as we shall see later. In Fig. 10 we show the pressure distribution 
over the wing surface and sheet, calculated from our iterative procedure, where it is 
compared with the initial inviscid solution, namely the solution of Smith [1]. We see that the 
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Fig. 8a. As Fig. 6a, tenth interactive calculation. Fig. 8b. As Fig. 6b, tenth global iteration. 
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Fig.  9. Sheet configurations. ( . . . .  ) initial inviscid 
solution, ( . . . . .  ) inviscid solution after one global iter- 
ation, ( ) and after ten global iterations; a = I, 
Re,  = 5 x 104. 
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Fig. 10. Pressure distributions on the upper surface of  
the wing and sheet. ( . . . . .  ) initial inviscid solution, 
( ) converged interactive solution; a = 1, R e r =  
5 x 10 4. 

suction peak is lower and, as may be expected when there is a region of separated flow, there 
is not a full pressure recovery beyond flow separation. This is qualitatively in accord with 
experimental results as we discuss later. For this particular case, flow separation takes place 
at 0/7 = 0.679, which may be compared with the value 0/7 = 0.761 obtained by Nutter [4], 
based on a boundary-layer calculation, and 0/y = 0.607 which Nutter obtains from his 
inviscid model of secondary separation. However, as we have noted in Section 1, the 
pressure distributions predicted by the inviscid secondary-separation model of Nutter are 
wholly unrealistic. The displacement effect associated with the flow separation is well 
illustrated by the displacement function 

6(O)= f(O)/Ve(O)= f ;  ( 1 -  V ) d~ . 
v e 

(4.1) 

For the case under consideration Fig. 11 shows this displacement function, which clearly 
defines the region of strong interaction. 
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Fig. 11. The displacement function 6, defined in ( 4 . 1 ) ,  

fol lowing the tenth global iteration; a = 1, R e r  = 5 × 
10  4" 
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Fig. 12. Variation of pressure over the wing surface 
with R e  r. ( ) R e  r = 5 x 103, ( . . . . .  ) R e  r = 5 x 104, 

( . . . . .  ) R e , = 2 x l 0 5 ; a = l .  
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With the incidence parameter a = 1 we have also obtained solutions in the Reynolds 
number range 5 x 103 ~< Re r ~< 2 x 105. The pressure distributions at the extremities of this 
range are shown in Fig. 12. We remark that for Re r ~> 104, in this range, the pressure 
distributions are virtually identical. Also we have observed that only towards the lower end 
of this range does the separation line begin to move outboard from the value O/y = 0.679. Of 
course, as Re, decreases further, the line of separation will move towards the leading edge as 
the region of separated flow disappears altogether. Similarly the position of the isolated 
vortex core is relatively unaffected by variations of Reynolds number in this range. In Table 
1 we show the position of the separation line and isolated vortex as a function of Reynolds 
number Rer. The displacement function & defined in (4.1), does increase dramatically with 
Rer. However, when this quantity is scaled with Rer 1/2 (refer to (2.13) for the definition of 
~') then it too is virtually insensitive to variations with Reynolds number in this range. 
Although it does diminish at smaller values of Re~, as is to be expected since the separated 
flow region will eventually disappear. 

The above results prompt the following two remarks. First, for Reynolds numbers 
Re, ~> 10 4 all the flow properties that we have discussed above behave in a conical fashion in 
the range of Re, under consideration. In spite of our procedures this is not a result which we 
may necessarily have anticipated. Second, consider the displacement function a. What we 
have demonstrated is that the quantity Jo (1 - rive) dz' = C~' where, in the range of Re r 
considered, C is essentially independent of Re~. Not only does this confirm the conical 
nature of the displacement function in physical variables, but it also has implications for an 
inviscid model of secondary separation of the type considered by Nutter. The vortex, 
springing from the wing surface, which represents the secondary separation phenomenon in 
Nutter's model, would be subsumed by the thick separated viscous layer that we have 
described above. Furthermore if, as our results suggest, this region does not decrease in 
thickness as the Reynolds number increases, then it seems that Nutter's inviscid model can 
never be the appropriate limiting flow at high Reynolds number. 

We have extended the range of solutions obtained by considering the effects of incidence 
variation at Re r = 5 × 104. In particular we have obtained solutions for the four values of the 
incidence parameter a = 0.5(0.5)2.0. For a = 1.5, 2.0 the solutions were obtained in a 
perfectly straightforward manner. However, with a = 0.5 difficulties were encountered. 
These arise, in part, from the fact that the inviscid-flow attachment line no longer coincides 
with the wing centre-line, and indeed moves slightly following each global iteration. An 
additional difficulty is that the vortex configuration is now very close to the wing. Care has to 
be taken that the length of the sheet is such that it does not interfere with the wing, and yet 
that it is of sufficient length to accommodate the source distribution. We have overcome 
these difficulties, in part by employing under-relaxation on the flow variables. 

Results which we have obtained by varying a are shown in Figs 13 and 14. The pressure 
variations over the wing surface are shown in Fig. 13. As with the case a = 1 the 
characteristic features of these are that the suction peak is reduced, when compared with the 
inviscid flow solutions in the absence of secondary separation, and that beyond the 

Table 1. Pos i t ion  of  the  s epa ra t i on  l ine O~ly, and  i so la ted  vor tex  core  as func t ions  of  Rer ;  a = 1 

R e  r 0, /y Z v 

5 x 10 -~ 0.778 0.636 + 0.284i 
5 x 104 0.679 0.637 + 0.280i 
2 × 105 0.652 0.636 + 0.278i 
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Fig. 13. The variation of pressure over the wing with 
incidence parameter  a. (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0; 
Re,  = 5 x 104. 
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Fig. 14. The sheet shapes for various values of the 
incidence parameter  a. (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0; 
Re r = 5 x 10 4. 

separation point there is only a minimal pressure recovery. The position of the separation 
line itself is shown in Table 2. Woodson and DeJarnette [6] have also carried out calculations 
for a = 1.5 on a wing with y = 14 °. The separation line is determined from a direct 
boundary-layer calculation as 0/3, = 0.7 which may be compared with our value of 0.657. The 
sheet shapes for this range of the incidence parameter are shown in Fig. 14. Again, as noted 
for the case a = 1, the isolated vortex core is displaced inboard and upwards by the separated 
flow region. 

Some of the flow features we have presented above may be compared with experiment. 
Detailed spanwise pressure distributions are presented by Hummel [3] and Marsden et al. [2] 
for wings with 3' = 14°, 20° and Reynolds numbers based on chord of 9 x 105 and 8 × 105 
respectively. These exhibit similar features to the distributions shown in Fig. 13 in the sense 
that as we move outboard beyond the position of peak suction there is not the significant 
pressure recovery predicted by a purely inviscid theory. However close to the leading edge 
another small suction peak is observed, which is indicative of a turbulent re-attachment of 
the flow. This is confirmed from oil-flow observations. In our model, which is based upon a 
laminar flow, the separated flow region extends beyond the leading edge. The measured 
pressures exhibit no conical flow features, as is clear from Hummel's presentation of the 
streamwise variation of pressure along the wing surface. Over the forward part of the wing 
the suction values are higher than we have predicted in Fig. 13, and fall in the streamwise 
direction to the trailing edge where they are lower than our predictions. Although the 
measured pressure variations are not conical, geometric features of the real flows, which 
include the separation line, the vortex sheet and the vortex core are remarkably conical. 
For a = 1.5 Hummel finds 0,13, = 0.67 whilst for 0.5 ~< a ~<0.75 Marsden et al. measure 

Table 2. Position of the separation line 0s/, /as a function of the incidence parameter  a; Re,  = 5 x 104 

a 0/7 

0.5 0.730 
1.0 0.679 
1.5 0.657 
2.0 0.651 



Secondary separation f r o m  a slender wing 349 

1.0 

.9 

.8 

y 

.7 

.6 

.5 
o ; 

Fig. 15a. A comparison of the vortex core lateral 
posit ion with experiment .  ( - - )  the inviscid solution 
of Smith [1], o present  calculations; Rer = 5 x 10 4. The 
bars I denote the range of the experimental  results 
adapted from Lowson [15]. In the exper iments  
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Fig. 15b. As Fig. 15a but for the height of  the vortex. 

0,/3, = 0.66. These values may be compared with our calculated values in Table 2. Lowson 
[15] has provided a useful correlation of vortex core positions from no fewer than ten 
investigations, which include both laminar and turbulent flow. Our Fig. 15 is adapted from 
his Fig. 2, which shows the experimental results in more detail. There is general agreement 
that the effect of the secondary separation is to move the vortex core both upward and 
inboard. That our results are consistent with this may be seen from Fig. 15. 

We may conclude that our model of the secondary separation phenomenon, based as it is 
upon a fully interactive viscous-inviscid flow, is superior to those which rely upon inviscid 
vortex-sheet models, of the type discussed by Nutter [4]. However whilst geometric features 
of the flow, such as the position of the separation line and vortex-core positions, are 
predicted satisfactorily we can record only qualitative agreement between the measured and 
calculated pressure distributions. 

Appendix 

A I .  Source-vortex sheet condition 

In order to apply the sheet conditions (2.6a,b) and (2.8) for use in the inviscid flow model 
they are combined in the form of equation (3.2) as follows. 

First we express the potential difference Aq~, at a po in t  on the sheet, from the equation 
g*(o-*) = -dAqb/do-* to give 

f 
~*max 

A ~  = F + , g*(s)  ds . (A.1) 

We next determine the mean values of the tangential and normal velocity components at this 
point, ~.m and ~.,,, respectively, from 

i.* [ dZ* dW sheet d_W_W = ~ r m -  i~ ' "  = e Id-Z- 
dcr sheet ~ 

(A.2) 
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where we have used dZ*/do '*  = e ~**, equation (3.1), do'*/do" = [dZ*/dZ] ,  equation (2.11), 
and again interpret the integrals which appear in dW/dZ* as Cauchy principal values when 
evaluated on the sheet. We finally note that, from (2.6a,b) 

doom = - r s i n  ~b + 1 [  N , (A.3) 

If we now substitute for Ado, doom and donm from (A.1), (A.2) and (A.3) respectively, in 
equation (2.8) we obtain the so-called 'pressure-stream surface condition' as 

i¢,*ldZ* 2( d Z  d W )  i dZ* 1 2  f~*ax 
-g*(o-*)e  [ ~ - -  2 dZ* dZ* + 2 g*(o-*) dZ v N -  2vN = r +  . g*(s) ds.  

where we have used r e i* = 2 e i* and dZ/do- = e i°. 

A2. Evaluation of the velocity field 

The evaluation of the surface velocities u e, v e on the wing, and on the sheet, necessitates the 
calculation of dox, doy and doz. The velocity components in the y- and z-directions are 
immediately obtained from the complex velocity as 

dW dZ* dW 
doy- ido~-  d Z  - dZ  dZ* ' (A.4) 

with dW/dZ* as in (2.12). The component of velocity parallel to the wing centreline, dox, is 
now obtained for our conical flow from Euler's theorem on homogeneous functions as 

~x = 1 (~  _ ydoy_ zdoz), (A.5) x 
where dO = ~e(W). To calculate do we integrate equation (2.12) to give 

F (Z*- Z~ 1 f o'max (Z*-Z*(s)] 
W= -iaZ* + ~ log Z* + Z ~ / +  ~ g*(s) log Z*+ Z*(s) /ds  

1 f]vNdt (Z_~) + --: log 1 -  dt* 

1 fo*maxvN dd_~ + ~ log{(Z* - Z*(s))(Z* + Z*(s))} ds .  (A.6) 

In the evaluation of (A.6) special care must be taken in the evaluation of the logarithmic 
function. In so doing we note that the path of integration used to derive (A.6) from (2.12) 
must not cross either the finite part of the source-vortex sheet or the cut which joins its free 
end Z e to the isolated vortex Z v. As with the complex velocity, the third and last terms in 
(A.6) are evaluated by Simpson's rule, whilst for the fourth term a Gaussian 5-point 
integration formula is used for computational convenience. 

We remove any ambiguity in the determination of the logarithmic function in (A.6) as 
follows. We denote by Log Z that value of log Z for which the imaginary part exceeds - ~r 
but is less than ~r. Suppose we wish to evaluate W on the wing surface, that is on the 
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imaginary axis in the Z*-plane, then we have 

for ,~m(Z*) > oCm(Z*(o-*)), log(Z* - Z*(o-*)) = Log(Z* - Z*(o-*)), 

for oCm(Z*(o-*)) > ,,~m(Z*) > 0 ,  log(Z* - Z*(o-*)) = Log(Z* - Z*(cr*)) + 2~ri, 
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} 
(A.7a,b) 

with similar interpretations for log(Z* - Z~) and the logarithm in the fourth term of (A.6). 
With riG, ~y and do: determined from equations (A.4) and (A.5), the surface velocities on 

the wing in polar coordinates, namely (Ue, G), are evaluated from (2.16a,b). 
For the corresponding velocity components on the sheet we use a slightly different 

procedure. This is because the evaluation of dW/dZ* at a point on the sheet yields mean 
values of the tangential and normal velocities, Opt,,, and qb,,,,, respectively as in (A.2), thus 

dW 
do- = dO,,,- idpn,,. (A.8) 

To calculate qby and ~z on the inner surface of the source-vortex sheet we have 

qby =qb cos~ -dP~s in&, , }  

q~ = q ~ , s i n 6 + O P  cos 4, 
(A.9a,b) 

where the subscript i denotes the inner surface of the sheet. We determine the quantities ~,,, 
and q~,~ from 

q%: ½(%i + %o)'} 
%,- %o : -g(o-) ,  

(A. 10a,b) 

and 

d/,  = - r sin ~b + ON 

where a subscript o denotes the outer surface of the sheet. Finally, from (A.5) with x = 1 
(see (2.3)), we have 

( ~ ) x  i : (~)  i - -  Y~Yi -  ZdPzi ' (A.11) 

and the surface velocities (%, Ue) a r e  obtained from (2.17), (2.18). 
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